Exercise 2.2.1

Show that any linear combination of linear operators is a linear operator.

Solution

Suppose L_{1} and L_{2} are linear operators. Then, by the definition of linearity,

$$
\begin{aligned}
& L_{1}\left(c_{1} u_{1}+c_{2} u_{2}\right)=c_{1} L_{1}\left(u_{1}\right)+c_{2} L_{1}\left(u_{2}\right) \\
& L_{2}\left(c_{1} u_{1}+c_{2} u_{2}\right)=c_{1} L_{2}\left(u_{1}\right)+c_{2} L_{2}\left(u_{2}\right),
\end{aligned}
$$

where c_{1} and c_{2} are arbitrary constants and u_{1} and u_{2} are solutions to a linear homogeneous equation. The aim is to show that a linear combination of L_{1} and $L_{2}, c_{3} L_{1}+c_{4} L_{2}$, is also linear.

$$
\left(c_{3} L_{1}+c_{4} L_{2}\right)\left(c_{1} u_{1}+c_{2} u_{2}\right)=c_{1}\left(c_{3} L_{1}+c_{4} L_{2}\right)\left(u_{1}\right)+c_{2}\left(c_{3} L_{1}+c_{4} L_{2}\right)\left(u_{2}\right) .
$$

We have

$$
\begin{aligned}
\left(c_{3} L_{1}+c_{4} L_{2}\right)\left(c_{1} u_{1}+c_{2} u_{2}\right) & =c_{3} L_{1}\left(c_{1} u_{1}+c_{2} u_{2}\right)+c_{4} L_{2}\left(c_{1} u_{1}+c_{2} u_{2}\right) \\
& =c_{3}\left[c_{1} L_{1}\left(u_{1}\right)+c_{2} L_{1}\left(u_{2}\right)\right]+c_{4}\left[c_{1} L_{2}\left(u_{1}\right)+c_{2} L_{2}\left(u_{2}\right)\right] \\
& =c_{3} c_{1} L_{1}\left(u_{1}\right)+c_{3} c_{2} L_{1}\left(u_{2}\right)+c_{4} c_{1} L_{2}\left(u_{1}\right)+c_{4} c_{2} L_{2}\left(u_{2}\right) \\
& =c_{1} c_{3} L_{1}\left(u_{1}\right)+c_{1} c_{4} L_{2}\left(u_{1}\right)+c_{2} c_{3} L_{1}\left(u_{2}\right)+c_{2} c_{4} L_{2}\left(u_{2}\right) \\
& =c_{1}\left[c_{3} L_{1}\left(u_{1}\right)+c_{4} L_{2}\left(u_{1}\right)\right]+c_{2}\left[c_{3} L_{1}\left(u_{2}\right)+c_{4} L_{2}\left(u_{2}\right)\right] \\
& =c_{1}\left(c_{3} L_{1}+c_{4} L_{2}\right)\left(u_{1}\right)+c_{2}\left(c_{3} L_{1}+c_{4} L_{2}\right)\left(u_{2}\right) .
\end{aligned}
$$

Therefore, any linear combination of linear operators is a linear operator.

